Fossils Rock Header image link

show/hide words to know

Earth's magnetic field: a magnetic pull that is created by the movement of iron within the Earth’s core. Electric currents and magnetic materials create a magnetic field that extends from the Earth’s core to outside our atmosphere where it meets the solar wind. Earth’s magnetic field protects us from these harmful solar winds.   

Feldspar: a mineral that crystalizes (forms) from magma. This mineral can be used to date rocks because it contains the radioisotope Potassium-40.

Magnetic North Pole: the point where the Earth’s magnetic field points vertically downwards; right now this is located near the North Pole. 

Paleomagnetism: the study of the Earth’s magnetic field recorded by magnetic minerals in rocks.  ... more

Radioisotope: an isotope that has an unstable nucleus because of its neutron number and decays at a known rate to a more stable form. For example Carbon -14 has 6 protons and 8 neutrons. This makes it unstable and every 5730 years half of those Carbon-14 isotopes have decayed (changed) to Nitrogen-14, a more stable isotope. 

Radiometric dating: a technique that measures the age of material such as rock or carbon, using known rates of decay and the observed amount of radioactive isotopes in the material. ... more

Dating fossils: Not including a dinner and movie.

With a fieldpack on my back and a rock hammer in hand, I race toward a foot-thick ledge sticking out of a hillside. “Please let it be a tephra!” I hoped. If it’s tephra, we can date the fossils nearby. Tephra is a volcanic deposit consisting of fragmented material that was projected into the air by a volcanic eruption and fell to the ground. Tephra consist of volcanic glass and crystals. Some of these crystals are feldspars, which contain the radioisotope potassium. Over time, potassium turns into argon. The ratio of potassium to argon isotopes in each feldspar crystal can give us an age to assign to nearby fossils. This form of dating is called radiometric dating and is one of several ways geologists date rocks and sediments.

This is an illustration of radioisotope decay over time.Tephra. Click for more detail.The volcanic glass in tephra is also important. When a volcano erupts the magma cools and hardens so fast it creates glass. The force of the eruption causes the glass to break into tiny glass shards, called ash. These tiny glass pieces are unique to each eruption. Geologists can use the tiny glass shards to match tephra from different locations by looking at the amount of various elements in the glass.       

Paleomagnetism is another way to date rocks. Rocks are made up of minerals. Some of these minerals are magnetic, meaning they are attracted by magnets, such as the Earth’s magnetic field. The Earth’s magnetic field is created by iron moving in the Earth’s core. The magnetic field has always been in a constant state of change. This means throughout Earth’s history, the magnetic field moved around and still does today.

Minerals can move around when rocks are hot and fluid. When the rock cools and hardens the minerals become locked into place. The magnetic minerals (the one that would be picked up if you put a magnet near them) will align to the current direction of the Magnetic North Pole.

Magnetic materials in rocks record the direction of Earth’s Magnetic North at the time the rocks were buried. Geologists look at the direction the magnetic minerals in rocks are pointing to know the age of those rocks.

 

Click for more detail.

Think of the magnetic field as a giant magnet in the Earth. When rocks are hot and soft, the minerals that make up the rock can move around and align to the Earth's Magnetic North location at that point in time. When the rock cools and hardens, the magnetic minerals get frozen aligned in that direction.

Today’s Magnetic North is around the North Pole, so if you think about it in terms of a clock, the minerals in a rock that had hardened today would point at the 12. Magnetic North hasn’t always been in the north. In fact there are several periods of time in the Earth’s history that it was flipped; Magnetic North was located at the South Pole!

I think I found a fossil/artifact! What should I do with it?
Answer »

Be part of Ask An Anthropologist

By volunteering, or simply sending us feedback on the site. Scientists, teachers, writers, illustrators, and translators are all important to the program. If you are interested in helping with the website we have a volunteers page to get the process started.

Donate icon  Contribute